薄膜太陽能電池原理
在(zai)化(hua)(hua)(hua)(hua)(hua)(hua)學(xue)電(dian)(dian)池中,化(hua)(hua)(hua)(hua)(hua)(hua)學(xue)能直接轉變為電(dian)(dian)能是靠(kao)電(dian)(dian)池內部(bu)自發(fa)進行氧(yang)化(hua)(hua)(hua)(hua)(hua)(hua)、還原(yuan)等(deng)(deng)化(hua)(hua)(hua)(hua)(hua)(hua)學(xue)反應(ying)的結果,這(zhe)種(zhong)反應(ying)分別(bie)在(zai)兩個電(dian)(dian)極(ji)上(shang)進行。負極(ji)活性物(wu)質由電(dian)(dian)位較負并在(zai)電(dian)(dian)解質中穩定的還原(yuan)劑組成,如(ru)鋅、鎘、鉛等(deng)(deng)活潑金屬(shu)和氫或碳氫化(hua)(hua)(hua)(hua)(hua)(hua)合物(wu)等(deng)(deng)。正極(ji)活性物(wu)質由電(dian)(dian)位較正并在(zai)電(dian)(dian)解質中穩定的氧(yang)化(hua)(hua)(hua)(hua)(hua)(hua)劑組成,如(ru)二氧(yang)化(hua)(hua)(hua)(hua)(hua)(hua)錳、二氧(yang)化(hua)(hua)(hua)(hua)(hua)(hua)鉛、氧(yang)化(hua)(hua)(hua)(hua)(hua)(hua)鎳等(deng)(deng)金屬(shu)氧(yang)化(hua)(hua)(hua)(hua)(hua)(hua)物(wu),氧(yang)或空氣,鹵素及其鹽類,含氧(yang)酸及其鹽類等(deng)(deng)。
電解質則是具有良好離子導電性的材料,如酸、堿、鹽的水溶液,有機或無機非水溶液、熔融鹽或固體電解質等。當外電路斷開時,兩極之間雖然有電位差(開(kai)路(lu)電壓),但沒有(you)(you)電(dian)(dian)(dian)流,存(cun)儲在電(dian)(dian)(dian)池中的化(hua)學能并不(bu)轉換為電(dian)(dian)(dian)能。當外(wai)電(dian)(dian)(dian)路(lu)閉合(he)時,在兩電(dian)(dian)(dian)極電(dian)(dian)(dian)位差(cha)的作用下(xia)即有(you)(you)電(dian)(dian)(dian)流流過外(wai)電(dian)(dian)(dian)路(lu)。
同時在電(dian)(dian)池(chi)內部,由于電(dian)(dian)解(jie)(jie)質中(zhong)不存在自由電(dian)(dian)子(zi),電(dian)(dian)荷的傳(chuan)遞必然伴隨兩極(ji)活性物(wu)質與電(dian)(dian)解(jie)(jie)質界(jie)面的氧(yang)化或還原反應(ying)(ying),以及(ji)反應(ying)(ying)物(wu)和反應(ying)(ying)產物(wu)的物(wu)質遷移。電(dian)(dian)(dian)(dian)荷(he)(he)在電(dian)(dian)(dian)(dian)解(jie)質中的(de)(de)傳(chuan)遞(di)(di)也(ye)要(yao)(yao)由離子的(de)(de)遷移來完成。因此,電(dian)(dian)(dian)(dian)池(chi)(chi)內部正(zheng)(zheng)常(chang)的(de)(de)電(dian)(dian)(dian)(dian)荷(he)(he)傳(chuan)遞(di)(di)和(he)物質傳(chuan)遞(di)(di)過程(cheng)是保(bao)證(zheng)正(zheng)(zheng)常(chang)輸(shu)出電(dian)(dian)(dian)(dian)能的(de)(de)必要(yao)(yao)條件。充電(dian)(dian)(dian)(dian)時,電(dian)(dian)(dian)(dian)池(chi)(chi)內部的(de)(de)傳(chuan)電(dian)(dian)(dian)(dian)和(he)傳(chuan)質過程(cheng)的(de)(de)方向恰與(yu)放電(dian)(dian)(dian)(dian)相反;電(dian)(dian)(dian)(dian)極反應(ying)必須是可逆的(de)(de),才(cai)能保(bao)證(zheng)反方向傳(chuan)質與(yu)傳(chuan)電(dian)(dian)(dian)(dian)過程(cheng)的(de)(de)正(zheng)(zheng)常(chang)進行。
因此(ci),電(dian)極反(fan)應可(ke)逆(ni)是構成蓄電(dian)池(chi)的(de)必(bi)要條件。為吉布斯反(fan)應自由能增量(焦);F為法拉(la)第常數=96500庫=26.8安·小時(shi);n為電(dian)池(chi)(chi)反應的(de)當(dang)(dang)量數。這(zhe)是(shi)電(dian)池(chi)(chi)電(dian)動勢(shi)與電(dian)池(chi)(chi)反應之間的(de)基本熱(re)(re)力學關系式(shi),也(ye)是(shi)計算電(dian)池(chi)(chi)能量轉換(huan)效率(lv)的(de)基本熱(re)(re)力學方(fang)程式(shi)。實際上(shang),當(dang)(dang)電(dian)流流過電(dian)極(ji)(ji)(ji)(ji)時,電(dian)極(ji)(ji)(ji)(ji)電(dian)勢(shi)都要偏離熱(re)(re)力學平衡的(de)電(dian)極(ji)(ji)(ji)(ji)電(dian)勢(shi),這(zhe)種現象(xiang)稱為極(ji)(ji)(ji)(ji)化(hua)(hua)(hua)(hua)。電(dian)流密度(du)(單位電(dian)極(ji)(ji)(ji)(ji)面積上(shang)通(tong)過的(de)電(dian)流)越(yue)大,極(ji)(ji)(ji)(ji)化(hua)(hua)(hua)(hua)越(yue)嚴重(zhong)。極(ji)(ji)(ji)(ji)化(hua)(hua)(hua)(hua)現象(xiang)是(shi)造(zao)成電(dian)池(chi)(chi)能量損(sun)失的(de)重(zhong)要原因(yin)之一(yi)。極(ji)(ji)(ji)(ji)化(hua)(hua)(hua)(hua)的(de)原因(yin)有三:①由電(dian)池(chi)(chi)中各部(bu)分電(dian)阻造(zao)成的(de)極(ji)(ji)(ji)(ji)化(hua)(hua)(hua)(hua)稱為歐姆極(ji)(ji)(ji)(ji)化(hua)(hua)(hua)(hua);②由電(dian)極(ji)(ji)(ji)(ji)-電(dian)解(jie)質(zhi)(zhi)界(jie)面層中電(dian)荷傳(chuan)(chuan)遞過程的(de)阻滯(zhi)造(zao)成的(de)極(ji)(ji)(ji)(ji)化(hua)(hua)(hua)(hua)稱為活化(hua)(hua)(hua)(hua)極(ji)(ji)(ji)(ji)化(hua)(hua)(hua)(hua);③由電(dian)極(ji)(ji)(ji)(ji)-電(dian)解(jie)質(zhi)(zhi)界(jie)面層中傳(chuan)(chuan)質(zhi)(zhi)過程遲緩而造(zao)成的(de)極(ji)(ji)(ji)(ji)化(hua)(hua)(hua)(hua)稱為濃差極(ji)(ji)(ji)(ji)化(hua)(hua)(hua)(hua)。減小(xiao)(xiao)極(ji)(ji)(ji)(ji)化(hua)(hua)(hua)(hua)的(de)方(fang)法是(shi)增大電(dian)極(ji)(ji)(ji)(ji)反應面積、減小(xiao)(xiao)電(dian)流密度(du)、提(ti)高反應溫度(du)以(yi)及改善(shan)電(dian)極(ji)(ji)(ji)(ji)表(biao)面的(de)催(cui)化(hua)(hua)(hua)(hua)活性。
薄膜太陽能電池優缺點
薄膜型太陽能電池由于使用材料較少,就每一模塊的成本而言比起堆積型太陽能電池有(you)著明(ming)顯的減少,制造程序上所需(xu)的能量也(ye)較堆積型(xing)太陽(yang)能電池來(lai)的小(xiao),它同時也(ye)擁有(you)整合(he)型(xing)式的連(lian)接模(mo)塊(kuai)(kuai),如(ru)此(ci)一來(lai)便(bian)可省下了獨(du)立模(mo)塊(kuai)(kuai)所需(xu)在固定(ding)和(he)內部(bu)連(lian)接的成本。
未來薄膜型太陽能電池將可能會取代現今一般常用硅太陽能電池,而成為市場主流。非晶硅太陽能電池與單晶硅太陽能電池或多晶硅太陽能電池的最主要差異是材料的不同,單晶硅太陽能電池或多晶硅太陽能電池的材料都疏,而非晶硅太陽能電池的材料則是SiH4,因為材料(liao)的不同而使(shi)非(fei)晶硅太陽能電(dian)池的構造與(yu)晶硅太陽能電(dian)池稍有(you)不同。
SiH4最大的(de)(de)優點為(wei)(wei)吸(xi)光效果及(ji)光導效果都很好,但其電氣特(te)性(xing)類似絕緣體,與硅的(de)(de)半導體特(te)性(xing)相差甚遠,因此(ci)最初認為(wei)(wei)SiH4是不適合的材料(liao)。但在1970年代(dai)科(ke)學家克服了這個問題,不久后美國的RCA制造出第一個非晶硅太陽能(neng)電池。雖然SiH4吸光效果及光導效果都很好,但由于(yu)其(qi)結晶(jing)構造比多晶(jing)硅太陽(yang)能電池差,所以懸(xuan)浮鍵的問(wen)題比多晶(jing)硅太陽(yang)能電池還嚴重,自由電子與電洞復合的速(su)率非(fei)常快;此(ci)外SiH4的結晶構造不規(gui)則會阻礙電子與電洞的移動使得擴散范圍變(bian)短。
基于以上兩個因素,因此當光照(zhao)射在SiH4上產(chan)生(sheng)電(dian)(dian)子(zi)(zi)電(dian)(dian)洞對后,必須盡(jin)快(kuai)將(jiang)電(dian)(dian)子(zi)(zi)與(yu)電(dian)(dian)洞分離(li),才能(neng)有效產(chan)生(sheng)光電(dian)(dian)效應。所以非(fei)晶硅太陽能(neng)電(dian)(dian)池大多做得很薄,以減(jian)少自(zi)由電(dian)(dian)子(zi)(zi)與(yu)電(dian)(dian)洞復合。由于SiH4的(de)吸光(guang)效果很好(hao),雖然(ran)非晶(jing)硅太陽(yang)能電池做得(de)很薄,仍然(ran)可以吸收大(da)部分的(de)光(guang)。
非(fei)晶硅太陽能電池最大(da)的(de)(de)優點(dian)為成本低,而缺(que)點(dian)則是效(xiao)率(lv)低及光電轉換(huan)效(xiao)率(lv)隨使(shi)(shi)用時間衰(shuai)退(tui)的(de)(de)問(wen)題。因此非(fei)晶硅太陽能電池在小電力市場上(shang)被廣(guang)泛(fan)使(shi)(shi)用,但(dan)在發電市場上(shang)則較不(bu)具(ju)競爭(zheng)力。
申明:以上內容源于程序系統索引或網民分享提供,僅供您參考使用,不代表本網站的研究觀點,請注意甄別內容來源的真實性和權威性。